二维动画面部捕捉

141人浏览 2024-05-05 20:49:52

6个回答

  • 喂,你好
    喂,你好
    最佳回答

    动作捕捉字面意思可以直观地理解为通过各种技术手段记录被观察对象(人或物,或是动物)的动作,并做有效的处理。从专业角度来看,动作捕捉是一项能够实时地准确测量、记录运动物体在实际三维空间中的各类运动轨迹和姿态,并在虚拟三维空间中重构这个物体每个时刻运动状态的高新技术。既然是一项技术,那么总是有各类不同方式实现这项技术的。动作捕捉技术现阶段可以分为以下几种:光学式,惯性式,机械式,声学式,电磁式。光学式动作捕捉,顾名思义,是通过光学原理来完场物体的捕捉和定位的。是通过光学镜头捕捉固定在人体或是物体上面的marker的位置信息来完成动作姿态捕捉。光学式动作捕捉依靠一整套精密而复杂的光学摄像头来实现,它通过计算机视觉原理,由多个高速摄像机从不同角度对目标特征点进行跟踪来完成全身的动作的捕捉。光学动作捕捉可分为被动式和主动式两种。这个分类是从marker来区别的。主动式是指marker是主动发光甚至可以自带ID编码的,这样镜头在视野中可以通过marker自身发光来观测它,并记录捕捉到其的运动轨迹。而被动式光学动作捕捉是通过镜头本身自带的灯板发出特定波长的红外光,照射到marker上,marker是通过特殊反光处理,可以反射镜头灯板发出的红外光,这样镜头就能在视野里捕捉记录该marker的运动轨迹。惯性动作捕捉则是采用惯性导航传感器AHRS(航姿参考系统)、IMU(惯性测量单元)测量被捕捉者或物体的运动加速度、方位、倾斜角等特性。惯性动作捕捉需要各类无线控件,电池组,传感器等一些配件。类似一个整装衣服穿在身上,通过各个部位的传感器来捕捉人体或物体的数据。目前主流的动作捕捉技术是惯性动作捕捉与光学动作捕捉。光学动作捕捉中,由于主动式marker需要供电,在固定marker时需要的配件和线路会影响使用,所以现在主流使用的光学动作捕捉几乎为被动式光学动捕。与被动式光学动作捕捉亚毫米级的精度相比,惯性动作捕捉的误差随着时间而累积,精度上不如被动式光学动作捕捉;在使用环境上,由于惯性动作捕捉的传感器长时间暴露在磁场中可能会造成传感器磁化,所以在使用时要远离磁场(包括但不限于电脑、键盘、电视等)。在自动化控制、运动分析、步态分析、虚拟现实、人机工效、影视动画等领域,被动式光学动作捕捉往往更具优势。考虑到惯性动作捕捉相对被动式光学动作捕捉具有的价格优势,在一些对精度要求不那么高的领域(如部分电影电视中的人群的动作捕捉),往往会选用惯性动作捕捉。

  • 心殇
    心殇

    关键词动作捕捉三维动画角色动画师 引言部分通过对角色动画师的工作内容和动补技术的分别介绍展现它们的不同,然后进行比较,验证最后的结果 1.动画师的职责内容 1.1.三维角色动画师的定义三维角色动画师是通过电脑软件来实现动画的效果的,三维动画师可以不会画任何东西,可以不懂色彩搭配,可以不懂构图,可以不会任何于绘画相关的东西,三维维动画师的工作就是将建模绑定后的模型,通过每秒24 帧的摆动作,使之连贯起来成为动画,将故事板所讲的文字或者分镜内容转化为响应角色模型的过程。传统的动画师(二维动画师),以前使用笔和纸来一张张的绘制上色校对,然后由动画片专用摄像机进行逐张拍摄最后合成为动画,随着电脑技术的发展,现在大部分也用电脑绘制,而三维动画师所要做的工作就比2 维动画师多的多,2 维动画师绘制时只要在所需要的帧绘制到位即可,3 维动画师则要估计镜头以及在同一个镜头中动作与动作的流畅和到位程度,做好了就是很棒的动画,甚至一些写实动画偶然看上去就像真人演员表演的一样,做不到位就很容易被观众看出来,就会看上去很假很别扭。有些人常常会讨论软件的使用,比如使用哪些软件做起动画来比较好(现在尤其是在讨论 3dsmax 和 maya),其实这些对于三维角色动画师而言,完全没有必要,作为三维动画师即使你软件不太会用,只要懂得k帧,了解动画的原理,可以 做出了颇有趣味的动画演示,其中身体力学很到位,其动画表演也很生动,这样你就可以胜任三维动画师了,当然想做这些也许要经过长期的训练,这个学习画画的原理也是一样的,除了长期的练习,还要培养自己对动作和表情方面的敏感,到达一定的时机,做出的动画就只靠的是一种"感觉"。 2.动作捕捉英文Motion capture,简称Mocap。技术涉及尺寸测量、物理空间里物体的定位及方位测定等方面可以由计算机直接理解处理的数据。在运动物体的关键部位设置跟踪器,由Motion capture 系统捕捉跟踪器位置,再经过计算机处理后向得到三维空间爱你坐标的数据。当数据被计算机识别后,可以应用在动画制作,步态分析,生物力学,人机工程等领域。我们讨论的是在动画制作上运用,其它部分不再涉及。目前在动画领域用的比较广泛的是光学式运动捕捉。光学式运动捕捉通过对目标上特定光点的监视和跟踪来完成运动捕捉的任务。目前常见的光学式运动捕捉大多基于计算机视觉原理。从理论上说,对于空间中的一个点,只要它能同时为两部相机所见,则根据同一时刻两部相机所拍摄的图像和相机参数,可以确定这一时刻该点在空间中的位置。当相机以足够高的速率连续拍摄时,从图像序列中就可以得到该点的运动轨迹。典型的光学式运动捕捉系统通常使用6~8 个相机环绕表演场地排列,这些相机的视野重叠区域就是表演者的动作范围。为了便于处理,通常要求表演者穿上单色的服装,在身体的关键部位,如关节、髋部、肘、腕等位置贴上一些特制的标志或发光点,称为"Marker",视觉系统将识别和处理这些标志。系统定标后,相机连续拍摄表演者的动作,并将图像序列保存下来,然后再进行分析和处理,识别其中的标志点,并计算其在每一瞬间的空间位置,进而得到其运动轨迹。为了得到准确的运动轨迹,相机应有较高的拍摄速率,一般要达到每秒60 帧以上。如果在表演者的脸部表情关键点贴上Marker,则可以实现表情捕捉。目前大部分表情捕捉都采用光学式。将运动捕捉技术用于动画制作,可极大地提高动画制作的水平。它极大地提高了动画制作的效率,降低了成本,而且使动画制作过程更为直观,效果更为生动。随着技术的进一步成熟,表演动画技术将会得到越来越广泛的应用,而运动捕捉技术作为表演动画系统不可缺少的、最关键的部分,必然显示出更加重要的地位。目前像"阿凡达""火星救母记"等3D 电影都是运用这种技术,它可以达到仿真的动作捕捉。不仅在国外,国内一些游戏厂家和一些动画公司也在运用中,像秦时明月技术方面:在以往的计算机动画制作中,我们都是使用三维动画制作软件来制作三维角色的形象并调制角 色动作。整个角色动作都是由操作人员逐帧调整的,这样动作的制作工作就变得十分烦琐、复杂,且极易出现误差,效率很低。所以一般使用三维动画制作软件制作出来的动作时间都不会很长,而且有些动作制作得十分拙劣。这一现象在某些电影电视作品中并不难发现。以Motion capture 为基础的动画制作系统将物体的实际动作数据记录下来输入计算机,经处理后由计算机在虚拟镜头中恢复,同时控制材质。由于它记录的是物体的实际运动,所以动作精确,效率极高。 优点:光学式运动捕捉的优点是表演者活动范围大,无电缆、机械装置的限制,使用方便。采样速率较高,可以满足多数体育运动测量的需要。Marker 价格便宜,便于扩充。 缺点:系统价格昂贵,虽然它可以捕捉实时运动,但后处理(包括Marker 的识别、跟踪、空间坐标的计算)时间长。这类系统对于表演场地的光照、反射情况敏感。装置定标也较为繁琐,特别是当运动复杂的时候。不同部位的 Marker 很容易混淆、遮挡,产生错误的结果,经常需要人工干预后处理过程。由于这样那样的各种限制,所以几乎所有的光学跟踪系统都还需要依靠后序处理程序对捕捉的数据进行分析,加工和整理然后才能把这些数据应用到动画角色模型上去。 3.动作捕捉技术是否可以取代手动K 帧这个答案是否,有些人会问手动K帧很麻烦,而且成本很大,需要请很多动画师来参与制作,而且不是随便的动画师能够达到写实的技术,要经过长期的训练才行,既然这么费事,为什么不用动补技术来取代呢,下面我来讨论下:1.动作捕捉出来的动画.迟缓,节奏慢,没有夸张,它不能爽快的将动作表达出来,很多认为动作自然就叫好,其实错了,一部好的动画是要感染观众的,不是说仅仅达到实现动画的目的就可以的。 2.这东西没有灵气,不够鲜活,没有弹性,目光呆板,表情僵硬,也许会有人说,那是动补的技术还不过关,不能够准时捕捉演员的动作和神态,当然这也是一个方面,但是最主要的还是动画的可控性,动画灵性不仅仅是通过模拟真人的举止可以达到,在传统的二维动画中,动画师常常会有一些小的花招来吸引观众的注意,虽然那些违反常态,不符合正常的生理,但其达到效果常常得到观众的认可。观众都喜欢动画师一帧帧做出来的动画,更多的表情细节,夸张搞笑的动作,好的动画师做出来的动画是动作捕捉不可能达到的3.动作捕捉具有不 可控性,其需要一定的条件来实现,最重要的就是进行被捕捉的人物或者动物,作为真人表演,也许可以仿真的表演,但是有一些高难度的动作,如空中反转,一些难度比较大的武打表演,这样不是一般人可以胜任,同时存在着安全的顾虑。当面对动物的时候,就无计可施,动画不会像人类那样听从导演的安排,按照导演想要的动作来进行表演,因此动补就无计可施了,还有一些非生物的运动,这些动补技术更是无处插针。4.动作捕捉只适合真人电影角色为真实的人类,这种写实的电影动作捕捉比动画师调效果好,效率也高。动作捕捉可以大幅减少动画师的工作量,但是不会取代动画师,任何一种动捕形式捕到的动作最终都要靠动画师再次修整的。再说动捕的设备不便宜,现在国内好多公司动作还都是手k 的。5.动补技术的确是给部分动画环节节省了很多时间,但它只是一门技术它永远不能取代动画师的工作,就像照片永远不能取代画画的。

  • 女孩儿
    女孩儿

    动作捕捉技术是一种记录并处理人或其他物体在三维空间中的动作的技术。动作捕捉技术的历史可以追溯到20世纪初,当时一些科学家和艺术家开始使用摄影机来记录人或动物的运动。随着计算机图形学和传感器技术的发展,动作捕捉技术逐渐成为电影、游戏、虚拟现实等领域中创造逼真角色和场景的重要手段。动作捕捉技术的原理主要是利用外部设备来对人体结构或其他物体的位移进行数据记录和姿态还原,这些设备可以分为光学、惯性、机械等不同类型,它们各有优缺点和适用范围。动作捕捉技术的应用非常广泛,除了娱乐领域外,还可以用于医疗、教育、军事、运动等方面,例如分析人体姿势、诊断疾病、模拟训练、提高运动表现等。动作捕捉技术的发展趋势是向更高精度、更低成本、更易操作和更多样化方向发展,例如利用深度学习等人工智能方法来优化数据处理和生成效果,或者利用智能手机等移动设备来实现便携式和低成本的动作捕捉。

  • 千年
    千年

    《Character Animator 2022直装破解版》百度网盘资源免费下载:

    链接: https://pan.baidu.com/s/1v8KaOdy2K0qKNL6wLEMG_g

    ?pwd=nen2 提取码: nen2

    Character Animator 2022 v22.0.0.111是Adobe公司旗下的一款2D动画制作软件(简称CH,角色动画师),主要用于制作富有表达力的高品质角色动画。由于其速度极快,甚至还可用在直播(Live)中。借助CH,我们可以从PS或AI导入图稿(也叫原始人偶),并为它们注入生命。我们可以使用摄像头、麦克风、键盘鼠标或触摸屏来捕捉自己的表演。而且CH会实时捕捉面部表情,其他部位的动作也可以使用触发器、行为等运动起来。该应用程序可通过修改内置角色模板、导入 Photoshop 和 Illustrator 角色或使用全新的 Sensei 角色工具帮助您创建人偶,还可帮助您操纵角色。无论是渴望成为动画师的人员还是专业动画师、视频内容创作者、教育工作者、游戏工作者、平面设计师还是插画师,Character Animator 适合所有从事媒体和娱乐行业且整体工作流程中需要快速转化动画的工作人员。利用此工具,还可让角色与粉丝之间通过直播进行互动。

  • 小斑斑
    小斑斑

    动作捕捉系统本质上是一种定位系统,通常需要在目标物布置定位设备进行追踪。以红外光学为原理的动作捕捉系统,主要由由光学镜头、动作捕捉软件、反光标识点、POE交换机、和若干配件组成,其中反光标识点(Marker点)即为布置在目标物上的一种特殊球体。红外光学原理的动作捕捉系统分为主动式和被动式,其区别之一就在于反光标识点。主动式原理的反光标识点需连接电源主动发光,从而光学相机能够获取其空间位置。而被动式光学原理中的反光标识小球,是一种表面涂有反光材料的小球,无连接线,不需要电源,内部没有任何电子元件,它固定在被捕捉物表面反射镜头发出的红外光,进而被多个镜头上的感应器矩阵接收,并获取其球心三维坐标。本文将进行被动式光学原理的动作捕捉系统中反光标识点(Marker点)的相关介绍。不同的应用场景下适配不同的反光标识点(Marker点)类型,例如当被捕捉物尺寸偏小时,需要较小的Marker与之适配,而当其表面非常光滑时,又需要带有双面粘性底座的反光标识点(Marker点)进行固定。反光标识点(Marker点)尺寸与固定方式 尺寸 反光标识点的大小选择选择通常与被捕捉物类型与尺寸有关,当捕捉人体全身动作时,常用直径12~15mm反光标识点(Marker点),而捕捉人体手部、足部、面部的精细动作时,常使用直径小于8mm的小尺寸反光标识点(Marker点)。而在自动化方向常见的无人机、机器人等多智能体室内定位与位姿捕捉,通常使用8~12mm反光标识点(Marker点),如果是使用场景空间与被捕捉物尺寸都比较大的情况,则使用直径大于15mm的Marker。固定方式 为保证系统正常使用,需要反光标识点(Marker点)能够稳定地固定在被捕捉物表面,反光标识点(Marker点)主要通过勾面底座、平面底座以及无底座三种方式进行固定。勾面底座:即尼龙搭扣方式,通过勾面规定到被测物表面的贴有的背胶魔术贴。平面底座:通常使用双面胶,将底座固定在坚固平滑的被测物表面,或用于人体局部的细微动作捕捉。无底座:反光标识点(Marker点)通过螺丝、热熔胶等方式直接与机械结构、亚克力板、碳纤维棒等材质的表面进行固定,反光标识点(Marker点)贴点方式 反光标识点(Marker点)的贴点通常有以下几种注意事项:① 为保证系统对被捕捉物建立刚体与多刚体模型,需要在被捕捉物表面至少设置三个反光标识点(Marker点)去定义一个模型,以获取其三维坐标,② 两个反光标识点(Marker点)不能距离太近,否则易造成系统无法正确识别,③ 反光标识点(Marker点)之间需要以非直线、非对称方式排布,使系统能够正确识别其方向以及区分相应动作而在不同的应用方向,例如机器人无人机室内定位,影视动捕特效制作,大空间VR实训,人体步态分析等,其对应贴点方式也有多种类型。运动分析领域 通常有专门的人体贴点模板,如Helen Hayes模型等,反光标识点(Marker点)按照固定位置贴在人体皮肤表面或紧身衣上。影视动画制作领域 通常使用身着动作捕捉服装方式进行贴点,一般在全身的贴点量通常大于或等于50个反光标识点(Marker点),每个肢体段都保证附着有3~5个Marker,其贴点位置通常在骨性标志点的关节处以及肢体段的中心,以保证运动中对点的遮挡不会影响动作捕捉效果的稳定流畅。

  • 是我想太多
    是我想太多

    “二维动画面部捕捉”是指通过特定的技术手段,将人物或角色的面部表情和动作捕捉下来,然后应用到二维动画中,使得动画角色能够栩栩如生地展现出各种面部表情和动作的技术。

    具体来说,二维动画面部捕捉通常包括以下步骤:

    1. 摄像头采集:使用一台或多台摄像头对人物进行面部表情和动作的采集。摄像头通常会安装在人物前方,以确保能够捕捉到面部细节。

    2. 面部追踪:通过计算机视觉技术,对摄像头采集到的视频进行分析和处理,提取出人物的面部特征点的位置和运动轨迹。这些特征点通常包括眼睛、眉毛、嘴巴等面部部位。

    3. 数据处理和转换:将采集到的面部特征点数据进行处理和转换,使其能够应用到二维动画中。这通常需要对数据进行插值、平滑和校准等处理,以确保面部表情和动作的准确性和流畅性。

    4. 动画应用:将经过处理的面部特征点数据应用到二维动画中。通常会使用专门的动画软件,将面部特征点与动画角色的控制点进行关联,从而实现面部表情和动作的驱动。

    通过二维动画面部捕捉技术,动画师能够更加方便和准确地为二维动画角色添加各种面部表情和动作,使得角色形象更加生动和丰富。面部捕捉技术也可以提高动画制作的效率和质量,减少手工绘制和调整的工作量,节省时间和人力成本。

免费获取咨询

今日已有1243人获取咨询

免费咨询

最新问答

更多